Règles d’association avec R

lovely analytics règles d'association avec R.png

Je vous propose de regarder comment utiliser les règles d’association avec R en utilisant l’algorithme apriori.

Pour cet exemple, j’ai choisi le dataset movie, disponible sur Kaggle. On a un ensemble de films notés par les utilisateurs, comme  ça pourrait être le cas par exemple sur Netflix ou sur une autre plateforme de VOD.

Au programme de ce petit tutoriel, nous allons voir les étapes suivantes :

  • Chargement et préparation des données
  • Statistiques descriptives
  • Règles d’association

Lire la suite de « Règles d’association avec R »

Orange, un outil de Data Mining vitaminé

Ma participation à un challenge avec l’outil Orange

lovely analytics Orange fruitful and fun

Cela faisait un moment que j’avais envie de tester Orange, c’est un petit outil de Data Mining entièrement gratuit qui est très ludique. D’ailleurs leur slogan c’est « Data Mining Fruitful and fun » en référence à leur logo : une orange à lunette qui semble super happy de faire du Data Mining. Il n’en fallait pas plus pour attiser ma curiosité et j’ai voulu voir si la promesse d’un outil sympa et coloré était tenue ou non. J’ai donc profité d’un Challenge Data Science pour tester Orange.

Lire la suite de « Orange, un outil de Data Mining vitaminé »

Random Forest, tutoriel pas à pas avec R

Apprenez à utiliser un Random Forest avec R

lovely analytics Random Forest

L’algorithme Random Forest (forêt aléatoire) fait partie de la famille des modèles d’agrégation et donne de très bons résultats dans la plupart des problématiques de prédiction. Je vous propose dans ce tutoriel de voir comment appliquer un algorithme Random Forest avec R de la préparation des données jusqu’à la restitution des résultats.

Lire la suite de « Random Forest, tutoriel pas à pas avec R »

Vous pensez que les graphiques R ne sont pas présentables?

3 librairies R à connaitre

lovelyanalytics_graphiquesR

Si quand vous entendez parler de graphiques R, vous pensez à la fonction plot, difficile à paramétrer avec un rendu que vous n’oseriez pas présenter, alors cet article est fait pour vous. Parce que ça c’était avant. Il existe maintenant des librairies qui permettent de faire facilement des graphiques beaucoup plus visuels. Je vous parle de 3 packages : ggplot2, plotly et gganimate (qui permet de faire des GIF animés).

Lire la suite de « Vous pensez que les graphiques R ne sont pas présentables? »

Réseaux de neurones comment ça marche ?

lovelyanalytics Réseaux de neuronesS’il y a un algorithme qui fait parler de lui en ce moment, un algorithme que tout le monde veut afficher fièrement sur son CV, c’est bien celui des réseaux de neurones (Neural Network). C’est l’algorithme de base qui se cache derrière le Deep Learning et les intelligences artificielles. Il est souvent utilisé pour les reconnaissances d’image et de voix. Mais sans aller jusque là, je vous propose de comprendre comment les réseaux de neurones fonctionnent pour pouvoir les utiliser. Alors accrochez vous, à la fin de l’article vous saurez comment ça marche.  Lire la suite de « Réseaux de neurones comment ça marche ? »

Préparer ses données avec Talend : 6 composants indispensables

lovelyanalytics_Talend.pngOn dit souvent que la préparation des données représente 75% du temps de travail d’un Data Scientist. Cela comprend le Data engineering qui consiste à transformer les données pour la création du modèle mais également une partie de data management plus classique. Pour préparer un dataset, souvent à partir de plusieurs sources de données, on peut utiliser un ETL (Extract Transform Load) qui s’avère plus pratique que les outils réservés à l’analyse. Parmi les ETL, je vous propose de tester Talend qui a l’avantage d’inclure une partie complètement gratuite, bien suffisante pour nos besoins de Data management.

Lire la suite de « Préparer ses données avec Talend : 6 composants indispensables »

Apprenez à utiliser 6 algorithmes de machine learning sur R

Apprendre à coder 6 algos avec R

Tutoriel 6 algos.png

GitHub vous connaissez? Je vous en parlais dans un article ici. J’y ai trouvé un tutoriel très intéressant qui présente 6 algorithmes d’apprentissage supervisé avec des détails pour les implémenter sur R. C’est idéal pour se former ou pour revoir ses bases. Je vous en dis un peu plus sur les 6 algorithmes en question :

Lire la suite de « Apprenez à utiliser 6 algorithmes de machine learning sur R »