Premiers pas avec Python

Apprendre à coder avec Python

Apprendre Python.pngRécemment on m’a demandé si je prévoyais d’inclure des exemples avec Python. Good question…
Je ne vois que des points positifs sur le fait d’utiliser Python :
Python et R sont les 2 principaux langages utilisés par les data scientists pour le machine learning. Historiquement, R est issu du monde des statisticiens tandis que Python vient de l’univers des développeurs. Aujourd’hui il y a un vrai battle entre les 2. En 2017, une étude menée par KDnuggets montre même que Python est officiellement passé devant R pour le machine learning et la Data Science :

python-r-other-2016-2017

De ce que j’ai pu lire, si vous partez de zero et que vous ne connaissez ni l’un ni l’autre, il vaut mieux apprendre Python. Cela vous permettra d’être plus à l’aise sur les projets Big Data en utilisant PySpark par exemple (tandis que SparkR n’est pas très développé).
Si vous connaissez plutôt R (comme moi), on ne va pas tout jeter à la poubelle pour autant et on peut tout aussi bien faire de la data science avec R. Mais autant ne pas mourir idiot et tester la concurrence 🙂

Me voici donc, grande débutante Python à vouloir tester et commencer à apprendre.

Lire la suite de « Premiers pas avec Python »

Comment faire quand la CAH est dépassée?

3 solutions pour faire des clusters avec de gros volumes de données

lovely analytics CAH.png

La CAH permet de créer des groupes d’individus homogènes, c’est une méthode de clustering et elle donne vraiment de bons résultats. L’inconvénient de cette méthode c’est que les temps de calcul peuvent être très longs lorsque le nombre de clients à segmenter augmente. Certains outils refusent même de calculer une CAH à partir d’un certain seuil.

Problème : Comment faire un clustering efficace quand le nombre d’individus devient tellement important qu’on ne peut plus utiliser la CAH?

Lire la suite de « Comment faire quand la CAH est dépassée? »

Optimiser un modèle avec Grid Search

Grid Search 3La plupart des modèles de machine learning doivent être paramétrés pour donner les meilleurs résultats. Par exemple pour un Random Forest, on doit choisir le nombre d’arbres à créer et le nombre de variables à utiliser à chaque division d’un noeud. Si on paramètre à la main, cela peut vite s’avérer très coûteux en temps (et pas forcément très intéressant) …

C’est là que le Grid search intervient. C’est une méthode d’optimisation (hyperparameter optimization) qui va nous permettre de tester une série de paramètres et de comparer les performances pour en déduire le meilleur paramétrage.

Lire la suite de « Optimiser un modèle avec Grid Search »

Orange, un outil de Data Mining vitaminé

Ma participation à un challenge avec l’outil Orange

lovely analytics Orange fruitful and fun

Cela faisait un moment que j’avais envie de tester Orange, c’est un petit outil de Data Mining entièrement gratuit qui est très ludique. D’ailleurs leur slogan c’est « Data Mining Fruitful and fun » en référence à leur logo : une orange à lunette qui semble super happy de faire du Data Mining. Il n’en fallait pas plus pour attiser ma curiosité et j’ai voulu voir si la promesse d’un outil sympa et coloré était tenue ou non. J’ai donc profité d’un Challenge Data Science pour tester Orange.

Lire la suite de « Orange, un outil de Data Mining vitaminé »

Réseaux de neurones comment ça marche ?

lovelyanalytics Réseaux de neuronesS’il y a un algorithme qui fait parler de lui en ce moment, un algorithme que tout le monde veut afficher fièrement sur son CV, c’est bien celui des réseaux de neurones (Neural Network). C’est l’algorithme de base qui se cache derrière le Deep Learning et les intelligences artificielles. Il est souvent utilisé pour les reconnaissances d’image et de voix. Mais sans aller jusque là, je vous propose de comprendre comment les réseaux de neurones fonctionnent pour pouvoir les utiliser. Alors accrochez vous, à la fin de l’article vous saurez comment ça marche.  Lire la suite de « Réseaux de neurones comment ça marche ? »

Ni boîte noire Ni usine à gaz

Simplifiez la Data science !

lovelyanalytics_boite_noire

Un data scientist doit maitriser de nombreux aspects : la collecte, la préparation des données, l’analyse, les algorithmes, les outils, la dataviz, la restitution, … Les sujets ne sont pas simples, c’est sûr et cela demande un réel effort de comprendre et d’expliquer simplement le fonctionnement des algorithmes comme les réseaux de neurones ou les forêts aléatoires. Souvent face à ces difficultés on rencontre 2 comportements : la boîte noire et l’usine à gaz qui sont tous 2 de très mauvais choix. Je vous explique ce que c’est et comment éviter de tomber dans ces pièges.

Lire la suite de « Ni boîte noire Ni usine à gaz »

Classification ascendante hiérarchique comment ça marche?

Apprenez à utiliser simplement une CAH en comprenant le fonctionnement de l’algorithme.

lovely analytics CAH

La CAH est un algorithme de machine learning qui permet, comme les K-means d’identifier des groupes homogènes dans une population. C’est par exemple la méthode de prédilection pour faire des segmentations clients sur des volumes de données acceptables (sinon on préférera utiliser la méthode mixte qui combine CAH et k-means). C’est une méthode que j’adore parce qu’elle m’a toujours surprise par son efficacité et sa capacité à mettre en avant des groupes très cohérents d’un point de vue métier. Typiquement avec la CAH on se dit toujours « Mais c’est tellement évident » en voyant les résultats.

Regardons de plus près comment ça marche :

Lire la suite de « Classification ascendante hiérarchique comment ça marche? »