Interprétez vos modèles avec LIME

Avez-vous remarqué que les modèles « complexes » comme Random Forest, Gradient Boosting ou Neural Network sont de plus en plus accessibles? C’est une bonne chose puisque ces algorithmes donnent généralement de très bons résultats. En revanche, un de leur inconvénient c’est leur effet Black Box : impossible d’expliquer dans le détail les règles de calcul de ces modèles.

Bien sûr on peut calculer l’importance des variables pour expliquer un peu le modèle mais sans aide il est difficile d’aller plus loin. Et cette aide, ce sont les modèles d’interprétabilité (interpretability) qui vont nous l’apporter.

J’ai testé LIME (Local Interpretable Model-Agnostic Explanations) qui est une librairie Python et je vous en parle dans cet article.

Lire la suite de « Interprétez vos modèles avec LIME »