Réseaux de neurones comment ça marche ?

lovelyanalytics Réseaux de neuronesS’il y a un algorithme qui fait parler de lui en ce moment, un algorithme que tout le monde veut afficher fièrement sur son CV, c’est bien celui des réseaux de neurones (Neural Network). C’est l’algorithme de base qui se cache derrière le Deep Learning et les intelligences artificielles. Il est souvent utilisé pour les reconnaissances d’image et de voix. Mais sans aller jusque là, je vous propose de comprendre comment les réseaux de neurones fonctionnent pour pouvoir les utiliser. Alors accrochez vous, à la fin de l’article vous saurez comment ça marche.  Lire la suite de « Réseaux de neurones comment ça marche ? »

Faire la moyenne c’est choisir la facilité

lovelyanalytics_moyenne2.png

Combien de fois par jours calculons nous une moyenne? Le salaire moyen, la rentabilité moyenne, l’ancienneté moyenne, … On calcule tellement de moyennes qu’on ne s’en rend plus compte et on va parfois même jusqu’à calculer des moyennes de moyennes (what the fuck?) Mais dans le fond on est bien naïfs de croire que l’on peut résumer autant de situations, autant de données avec un seul et même indicateur !

Lire la suite de « Faire la moyenne c’est choisir la facilité »

Comment identifier les spécificités d’une sous-population ?

L’indice base 100 est mort, vive la valeur test

lovely-analytics-sous-populationLe profiling c’est un grand classique de l’analyse de données. L’objectif est de décrire le profil d’une population et de mettre en avant ses spécificités par rapport à une population de référence. Par exemple on peut analyser le profil de nos clients par rapport à la population française pour identifier le coeur de cible de notre marque. Ou on peut comparer les différents segments d’une segmentation client (pour en savoir plus sur la segmentation : ici, ou ici )

Souvent les chargés d’études utilisent les indices base 100 pour comparer les populations. Je suis absolument contre l’utilisation de ces index qui ne prennent absolument pas en compte la significativité. J’utilise toujours les valeurs tests. Je vous dis pourquoi et comment les calculer.

Lire la suite de « Comment identifier les spécificités d’une sous-population ? »

Comment réussir sa segmentation client?

segmentation-clientUn grand classique du marketing c’est la segmentation client. Il en existe plusieurs sortes mais elles ont toutes le même objectif, celui de passer d’une vision complexe et individuelle des clients à une vision agrégée en créant des groupes de clients suivant leur ressemblance. Certains pièges sont à éviter pour construire une segmentation efficace pour les équipes marketing

Lire la suite de « Comment réussir sa segmentation client? »

Gradient Boosting, comment ça marche?

gradient-boosting

Après le Bagging et l’algorithme Random Forest j’avais envie de creuser un peu plus le boosting avec le cas particulier de l’algorithme Gradient Boosting Machine (GBM).

Il s’agit là encore d’une méthode d’agrégation de modèles et je vous propose de découvrir le principe de fonctionnement de cet algorithme.

Lire la suite de « Gradient Boosting, comment ça marche? »

k-means, comment ça marche?

k-means


Le k-means est un algorithme de clustering, en d’autres termes il permet de réaliser des analyses non supervisées, d’identifier un pattern au sein des données et de regrouper les individus ayant des caractéristiques similaires. C’est une méthode simple et rapide.

Le cas d’usage le plus classique pour les méthodes de clustering c’est la segmentation client. On peut aussi les utiliser de manière plus descriptive pour comprendre et synthétiser une population. En revanche, pour construire une segmentation client robuste, avec plusieurs axes je vous recommande plutôt d’utiliser la classifiation ascendante hiérarchique ou la méthode mixte. Lire la suite de « k-means, comment ça marche? »

Random Forest, comment ça marche?

Random Forest

Dans cet article je vous explique simplement comment fonctionne un algorithme de Random Forest (forêt aléatoire) pour faire de la prédiction. Quand et comment l’utiliser, c’est par ici …

Lire la suite de « Random Forest, comment ça marche? »