Random Forest, tutoriel pas à pas avec R

Apprenez à utiliser un Random Forest avec R

lovely analytics Random Forest

L’algorithme Random Forest (forêt aléatoire) fait partie de la famille des modèles d’agrégation et donne de très bons résultats dans la plupart des problématiques de prédiction. Je vous propose dans ce tutoriel de voir comment appliquer un algorithme Random Forest avec R de la préparation des données jusqu’à la restitution des résultats.

Lire la suite de « Random Forest, tutoriel pas à pas avec R »

Classification ascendante hiérarchique comment ça marche?

Apprenez à utiliser simplement une CAH en comprenant le fonctionnement de l’algorithme.

lovely analytics CAH

La CAH est un algorithme de machine learning qui permet, comme les K-means d’identifier des groupes homogènes dans une population. C’est par exemple la méthode de prédilection pour faire des segmentations clients sur des volumes de données acceptables (sinon on préférera utiliser la méthode mixte qui combine CAH et k-means). C’est une méthode que j’adore parce qu’elle m’a toujours surprise par son efficacité et sa capacité à mettre en avant des groupes très cohérents d’un point de vue métier. Typiquement avec la CAH on se dit toujours « Mais c’est tellement évident » en voyant les résultats.

Regardons de plus près comment ça marche :

Lire la suite de « Classification ascendante hiérarchique comment ça marche? »

Apprenez à utiliser 6 algorithmes de machine learning sur R

Apprendre à coder 6 algos avec R

Tutoriel 6 algos.png

GitHub vous connaissez? Je vous en parlais dans un article ici. J’y ai trouvé un tutoriel très intéressant qui présente 6 algorithmes d’apprentissage supervisé avec des détails pour les implémenter sur R. C’est idéal pour se former ou pour revoir ses bases. Je vous en dis un peu plus sur les 6 algorithmes en question :

Lire la suite de « Apprenez à utiliser 6 algorithmes de machine learning sur R »

k-means, comment ça marche?

k-means


Le k-means est un algorithme de clustering, en d’autres termes il permet de réaliser des analyses non supervisées, d’identifier un pattern au sein des données et de regrouper les individus ayant des caractéristiques similaires. C’est une méthode simple et rapide.

Le cas d’usage le plus classique pour les méthodes de clustering c’est la segmentation client. On peut aussi les utiliser de manière plus descriptive pour comprendre et synthétiser une population. En revanche, pour construire une segmentation client robuste, avec plusieurs axes je vous recommande plutôt d’utiliser la classifiation ascendante hiérarchique ou la méthode mixte. Lire la suite de « k-means, comment ça marche? »