Comment faire quand la CAH est dépassée?

3 solutions pour faire des clusters avec de gros volumes de données

lovely analytics CAH.png

La CAH permet de créer des groupes d’individus homogènes, c’est une méthode de clustering et elle donne vraiment de bons résultats. L’inconvénient de cette méthode c’est que les temps de calcul peuvent être très longs lorsque le nombre de clients à segmenter augmente. Certains outils refusent même de calculer une CAH à partir d’un certain seuil.

Problème : Comment faire un clustering efficace quand le nombre d’individus devient tellement important qu’on ne peut plus utiliser la CAH?

Lire la suite de « Comment faire quand la CAH est dépassée? »

Optimiser un modèle avec Grid Search

Grid Search 3La plupart des modèles de machine learning doivent être paramétrés pour donner les meilleurs résultats. Par exemple pour un Random Forest, on doit choisir le nombre d’arbres à créer et le nombre de variables à utiliser à chaque division d’un noeud. Si on paramètre à la main, cela peut vite s’avérer très coûteux en temps (et pas forcément très intéressant) …

C’est là que le Grid search intervient. C’est une méthode d’optimisation (hyperparameter optimization) qui va nous permettre de tester une série de paramètres et de comparer les performances pour en déduire le meilleur paramétrage.

Lire la suite de « Optimiser un modèle avec Grid Search »

Inspirez-moi, inspirez-vous

Liens utiles pour Data Scientist

Prenez mes idées j'en aurai d'autresJ’ai commencé ce blog sur l’analyse de données pour moi, puis je me suis rendue compte que je le faisais aussi pour vous. Je me suis demandée jusqu’où je pourrais aller dans mes articles avec toujours un peu d’inquiétude : « Si je publie tout ce que je sais, que me restera t-il? ». Après un peu plus d’un an, je me rends surtout compte que plus on donne et plus on progresse. Chaque article que j’écris sur un sujet que je connaissais déjà me permet d’attaquer un nouveau sujet. Je m’enrichie aussi énormément de vos commentaires et de vos messages d’encouragement.

Coco Chanel a dit « Prenez mes idées j’en aurai d’autres » et j’adore cette citation. Alors j’ai décidé de partager avec vous mes sources d’inspiration.

Chacun de ces liens mérite toute votre attention. D’ailleurs j’espère secrètement que lovelyanalytics est aussi dans votre liste de liens préférés. Alors n’attendez plus et ajoutez cette page à vos favoris, je suis sûre qu’elle vous aidera un jour ou l’autre.

Lire la suite de « Inspirez-moi, inspirez-vous »

Orange, un outil de Data Mining vitaminé

Ma participation à un challenge avec l’outil Orange

lovely analytics Orange fruitful and fun

Cela faisait un moment que j’avais envie de tester Orange, c’est un petit outil de Data Mining entièrement gratuit qui est très ludique. D’ailleurs leur slogan c’est « Data Mining Fruitful and fun » en référence à leur logo : une orange à lunette qui semble super happy de faire du Data Mining. Il n’en fallait pas plus pour attiser ma curiosité et j’ai voulu voir si la promesse d’un outil sympa et coloré était tenue ou non. J’ai donc profité d’un Challenge Data Science pour tester Orange.

Lire la suite de « Orange, un outil de Data Mining vitaminé »

Random Forest, tutoriel pas à pas avec R

Apprenez à utiliser un Random Forest avec R

lovely analytics Random Forest

L’algorithme Random Forest (forêt aléatoire) fait partie de la famille des modèles d’agrégation et donne de très bons résultats dans la plupart des problématiques de prédiction. Je vous propose dans ce tutoriel de voir comment appliquer un algorithme Random Forest avec R de la préparation des données jusqu’à la restitution des résultats.

Lire la suite de « Random Forest, tutoriel pas à pas avec R »

Vous pensez que les graphiques R ne sont pas présentables?

3 librairies R à connaitre

lovelyanalytics_graphiquesR

Si quand vous entendez parler de graphiques R, vous pensez à la fonction plot, difficile à paramétrer avec un rendu que vous n’oseriez pas présenter, alors cet article est fait pour vous. Parce que ça c’était avant. Il existe maintenant des librairies qui permettent de faire facilement des graphiques beaucoup plus visuels. Je vous parle de 3 packages : ggplot2, plotly et gganimate (qui permet de faire des GIF animés).

Lire la suite de « Vous pensez que les graphiques R ne sont pas présentables? »

Réseaux de neurones comment ça marche ?

lovelyanalytics Réseaux de neuronesS’il y a un algorithme qui fait parler de lui en ce moment, un algorithme que tout le monde veut afficher fièrement sur son CV, c’est bien celui des réseaux de neurones (Neural Network). C’est l’algorithme de base qui se cache derrière le Deep Learning et les intelligences artificielles. Il est souvent utilisé pour les reconnaissances d’image et de voix. Mais sans aller jusque là, je vous propose de comprendre comment les réseaux de neurones fonctionnent pour pouvoir les utiliser. Alors accrochez vous, à la fin de l’article vous saurez comment ça marche.  Lire la suite de « Réseaux de neurones comment ça marche ? »