Mesurer la performance d’un modèle : Accuracy, recall et precision

Dans mon article sur la performance des modèles je vous présentais la démarche à suivre pour mesurer la performance de vos algorithmes. Il est temps de voir plus en détail quelques uns des indicateurs qui peuvent être utilisés pour y parvenir. Dans cet article, je vais vous présenter 3 indicateurs, adaptés pour évaluer la performance d’un modèle de classification et qui sont calculés à partir de la matrice de confusion. Ils sont assez simples à comprendre et sont très complémentaires : l’accuracy, le recall et la precision

Lire la suite de « Mesurer la performance d’un modèle : Accuracy, recall et precision »

Comment mesurer la performance d’un modèle ?

Dans cet article j’ai envie de vous parler de la performance des modèles au sens large (classification ou régression). Il y a déjà pas mal d’articles pour comprendre les algorithmes (Arbre de décision, Random Forest, Gradient Boosting, …) mais je n’avais pas encore abordé leur évaluation. Pourtant c’est un sujet essentiel. Peu importe votre projet, vous serez forcément amené(e) à devoir évaluer la performance de votre modèle pour mesurer les risques mais également pour comparer plusieurs algorithmes ou plusieurs versions de votre algorithme. Dans cet article je vais vous présenter la démarche globale de mesure de la performance des modèles puis plusieurs articles vous présenteront ensuite les indicateurs à utiliser en fonction du type de modèles.

Lire la suite de « Comment mesurer la performance d’un modèle ? »