Optimiser un modèle avec Grid Search

Grid Search 3La plupart des modèles de machine learning doivent être paramétrés pour donner les meilleurs résultats. Par exemple pour un Random Forest, on doit choisir le nombre d’arbres à créer et le nombre de variables à utiliser à chaque division d’un noeud. Si on paramètre à la main, cela peut vite s’avérer très coûteux en temps (et pas forcément très intéressant) …

C’est là que le Grid search intervient. C’est une méthode d’optimisation (hyperparameter optimization) qui va nous permettre de tester une série de paramètres et de comparer les performances pour en déduire le meilleur paramétrage.

Lire la suite de « Optimiser un modèle avec Grid Search »